由于一系列理想的模型属性,卷积神经网络(CNN)的使用在深度学习中被广泛扩展,这导致了有效有效的机器学习框架。但是,必须将CNN架构定制为特定任务,以结合输入长度,分辨率和尺寸的考虑因素。在这项工作中,我们通过连续的卷积神经网络(CCNN)克服了针对特定问题的CNN体​​系结构的需求:一个配备了连续卷积内核的单个CNN体系结构,可用于根据任意分辨率,维度,长度和长度的数据进行任务,而无需结构性长度变化。连续的卷积内核在每一层的远距离依赖性模型,并消除当前CNN体系结构中所需的降采样层和任务依赖性深度的需求。我们通过将相同的CCNN应用于顺序(1 $ \ mathrm {d} $)和视觉数据(2 $ \ mathrm {d} $)上的一系列任务来显示我们方法的普遍性。我们的CCNN竞争性能,并且在所有考虑的所有任务中通常都优于当前最新的。
translated by 谷歌翻译
我们介绍了CheBlieset,一种对(各向异性)歧管的组成的方法。对基于GRAP和基于组的神经网络的成功进行冲浪,我们利用了几何深度学习领域的最新发展,以推导出一种新的方法来利用数据中的任何各向异性。通过离散映射的谎言组,我们开发由各向异性卷积层(Chebyshev卷积),空间汇集和解凝层制成的图形神经网络,以及全球汇集层。集团的标准因素是通过具有各向异性左不变性的黎曼距离的图形上的等级和不变的运算符来实现的。由于其简单的形式,Riemannian公制可以在空间和方向域中模拟任何各向异性。这种对Riemannian度量的各向异性的控制允许平衡图形卷积层的不变性(各向异性度量)的平衡(各向异性指标)。因此,我们打开大门以更好地了解各向异性特性。此外,我们经验证明了在CIFAR10上的各向异性参数的存在(数据依赖性)甜点。这一关键的结果是通过利用数据中的各向异性属性来获得福利的证据。我们还评估了在STL10(图像数据)和ClimateNet(球面数据)上的这种方法的可扩展性,显示了对不同任务的显着适应性。
translated by 谷歌翻译
心电图(ECG)是一种有效且无侵入性诊断工具,可测量心脏的电活动。解释ECG信号检测各种异常是一个具有挑战性的任务,需要专业知识。最近,利用深度神经网络的ECG分类来帮助医疗从业者变得流行,但他们的黑匣子自然妨碍了临床实施。已经提出了几种基于显着性的可解释性技术,但它们仅表明重要特征的位置而不是实际功能。我们提出了一种名为QLST的新型解释性技术,一种基于查询的潜空间遍历技术,可以提供对任何ECG分类模型的解释。使用QLST,我们训练一个神经网络,该网络网络学习在大学医院数据集训练的变分性AutoEncoder的潜在空间中,超过80万家ECG为28个疾病。我们通过实验证明我们可以通过通过这些遍历来解释不同的黑匣子分类器。
translated by 谷歌翻译
音频的高时间分辨率和波形中小不规则性的感知敏感性使得在高采样率中合成复杂和计算密集的任务,禁止在许多方法中的实时,可控合成。在这项工作中,我们的目标是在有条件隐含的神经表示(CINR)的潜力上阐明作为音频合成的生成框架中的轻质骨干。隐式神经表示(INR)是用于近似低维功能的神经网络,训练以通过将输入坐标映射到输入位置处的结构信息来表示单个几何对象。与用于代表几何对象的其他神经方法相比,参数化对象所需的内存与分辨率无关,并且仅具有其复杂性的尺度。这是一个必论是INRS具有无限分辨率,因为它们可以在任意分辨率下进行取样。在生成域中应用INR的概念,我们框架生成建模作为学习连续功能的分布。这可以通过将调节方法引入INRS来实现。我们的实验表明,定期的条件INRS(PCINR)学习更快,并且通常比具有相等参数计数的转换卷积神经网络的定量更好的音频重建。但是,它们的性能对激活缩放超参数非常敏感。当学习代表更均匀的组时,PCINR倾向于在重建中引入人造高频分量。我们通过在训练期间应用标准重量正则化来验证这种噪音,可以减少PCINR的组成深度,并建议未来研究的方向。
translated by 谷歌翻译
包括协调性信息,例如位置,力,速度或旋转在计算物理和化学中的许多任务中是重要的。我们介绍了概括了等级图形网络的可控e(3)的等值图形神经网络(Segnns),使得节点和边缘属性不限于不变的标量,而是可以包含相协同信息,例如矢量或张量。该模型由可操纵的MLP组成,能够在消息和更新功能中包含几何和物理信息。通过可操纵节点属性的定义,MLP提供了一种新的Activation函数,以便与可转向功能字段一般使用。我们讨论我们的镜头通过等级的非线性卷曲镜头讨论我们的相关工作,进一步允许我们引脚点点的成功组件:非线性消息聚集在经典线性(可操纵)点卷积上改善;可操纵的消息在最近发送不变性消息的最近的等价图形网络上。我们展示了我们对计算物理学和化学的若干任务的方法的有效性,并提供了广泛的消融研究。
translated by 谷歌翻译
We develop a novel framework for single-scene video anomaly localization that allows for human-understandable reasons for the decisions the system makes. We first learn general representations of objects and their motions (using deep networks) and then use these representations to build a high-level, location-dependent model of any particular scene. This model can be used to detect anomalies in new videos of the same scene. Importantly, our approach is explainable - our high-level appearance and motion features can provide human-understandable reasons for why any part of a video is classified as normal or anomalous. We conduct experiments on standard video anomaly detection datasets (Street Scene, CUHK Avenue, ShanghaiTech and UCSD Ped1, Ped2) and show significant improvements over the previous state-of-the-art.
translated by 谷歌翻译
机器人越来越多地部署在与人类共享的空间中,包括家庭环境和工业环境。在这些环境中,人与机器人之间的相互作用(HRI)对于安全性,可读性和效率至关重要。 HRI的一个关键因素是信任,它调节了系统的接受。已显示拟人化可以调节机器人的信任发展,但工业环境中的机器人通常不是拟人化的。我们在工业环境中设计了一个简单的互动,在该环境中,拟人化模拟驱动器(ARMOD)机器人模拟了自动驾驶汽车(AGV)。该任务由与AGV的人类交叉路径组成,有或不带有狭窄的走廊上安装在顶部。人类和系统在越过路径时需要协商轨迹,这意味着人必须关注机器人的轨迹,以避免与它发生碰撞。在存在ARMOD的情况下,报告的信任评分有显着的增长,表明拟人化机器人的存在足以调节信任,即使在有限的相互作用中,就像我们在这里提出的相互作用一样。
translated by 谷歌翻译
国际危机如何展开?我们将国际关系概念化为对手之间的战略国际象棋游戏,并开发了一种系统的方法,以准确且一致的历史准确,一致地测量碎片,移动和gam。我们基于国际危机行为(ICB)项目的非常高质量的叙事语料库,介绍了一个名为ICBE的国际事件的新本体和数据集。我们证明,ICBE的覆盖范围,召回和精度比现有数据集的现有状态更高,并进行了两项关于古巴导弹危机(1962)和Crimea-Donbas危机(2014)的详细案例研究。我们进一步介绍了两个新的事件可视化(事件Icongraphy和危机地图),这是一种使用自然语言处理(Sythnetic叙述)测量事件召回的自动基准,以及用于客观测量事件精确度的本体论重建任务。我们在伴侣网站www.crisisevents.org和github存储库中提供数据,在线附录,复制材料以及可视化的可视化材料和可视化。
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译
空间生物学研究旨在了解太空飞行对生物的根本影响,制定支持深度空间探索的基础知识,最终生物工程航天器和栖息地稳定植物,农作物,微生物,动物和人类的生态系统,为持续的多行星寿命稳定。要提高这些目标,该领域利用了来自星空和地下模拟研究的实验,平台,数据和模型生物。由于研究扩展到低地球轨道之外,实验和平台必须是最大自主,光,敏捷和智能化,以加快知识发现。在这里,我们介绍了由美国国家航空航天局的人工智能,机器学习和建模应用程序组织的研讨会的建议摘要,这些应用程序为这些空间生物学挑战提供了关键解决方案。在未来十年中,将人工智能融入太空生物学领域将深化天空效应的生物学理解,促进预测性建模和分析,支持最大自主和可重复的实验,并有效地管理星载数据和元数据,所有目标使生活能够在深空中茁壮成长。
translated by 谷歌翻译